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3 Sobolev Spaces

Exercise 3.1. We will prove it by induction. The case k = 1 is trivial, indeed f(x1, x2) =
f1(x2)f2(x1) and

∥f∥L1(R2) =
∫
R

∫
R

|f1(x2)||f2(x1)| dx1dx2 = ∥f1∥L1(R)∥f2∥L1(R).

Let now k ≥ 2 and assume the estimate is true for k. We have to prove that the estimate
still holds for k + 1. Let us treat the case k = 2 to see how the proof of the induction
hypothesis should go. We have

f(x) = f1(x2, x3)f2(x1, x3)f3(x1, x2).

Thanks to Fubini’s theorem and Cauchy-Schwarz inequality (used each twice), we deduce
that ∫

R3
|f(x)|dx =

∫
R

(∫
R2

|f1(x2, x3)||f2(x1, x3)||f3(x1, x2)|dx1 dx2

)
dx3

≤ ∥f3∥L2(R2)

∫
R

(∫
R2

|f1(x2, x3)|2|f2(x1, x3)|2dx1 dx2

) 1
2

dx3

= ∥f3∥L2(R2)

∫
R

(∫
R

|f1(x2, x3)|2dx2

) 1
2
(∫

R
|f2(x1, x3)|2dx1

) 1
2

dx3

≤ ∥f3∥L2(R2)

(∫
R

∥f1( ·, x3)∥2
L2(R) dx3

) 1
2
(∫

R
∥f2( · , x3)∥2

L2(R) dx3

) 1
2

= ∥f1∥L2(R2) ∥f2∥L2(R3) ∥f3∥L2(R2) .

For every fixed xk+2 ∈ R, by Hölder inequality with p = k + 1, p′ = k+1
k

we get

∫
Rk+1

|f(x)|dx1 . . . dxk+1 ≤ ∥fk+2∥Lk+1(Rk+1)

(∫
Rk+1

k+1∏
i=1

|fi|
k+1

k dx1 . . . dxk+1

) k
k+1

. (1)

By applying the inductive hypothesis on the functions |fi|
k+1

k we obtain∫
Rk+1

k+1∏
i=1

|fi|
k+1

k dx1 . . . dxk+1 ≤
k+1∏
i=1

∥fi∥
k+1

k

Lk+1(Rk),

which together with (1), gives∫
Rk+1

|f(x)|dx1 . . . dxk+1 ≤ ∥fk+2∥Lk+1(Rk+1)

k+1∏
i=1

∥fi∥Lk+1(Rk). (2)
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Since by hypothesis fi ∈ Lk+1(Rk+1), all the functions xk+2 7→ ∥fi∥Lk+1(Rk) belong
to Lk+1(R). Thus by applying again Hölder inequality (with k + 1 terms) we get that∏k+1

i=1 ∥fi∥Lk+1(Rk) ∈ L1(R) and so, by integrating (2) in dxk+2 we conclude

∫
Rk+2

|f(x)|dx1 . . . dxk+2 ≤
k+2∏
i=1

∥fi∥Lk+1(Rk+1).

Exercise 3.2. — By applying Hölder inequality with exponents p
α r

and q
(1−α)r we

get ∫
Ω

|f |r =
∫

Ω
|f |αr|f |(1−α)r ≤

(∫
Ω

|f |p
)αr

p
(∫

Ω
|f |q
) (1−α)r

q

,

from which we deduce the desired inequality.
— For every x, y ∈ Ω we have

|u(x) − u(y)|
|x − y|γ

= |u(x) − u(y)|t
|x − y|tα

|u(x) − u(y)|1−t

|x − y|(1−t)β ≤ [u]tC0,α(Ω)[u]1−t
C0,β(Ω),

and by taking the supremum all over x, y ∈ Ω we get the thesis.

Exercise 3.3. Since u(x) → +∞ as |x| → 0, we deduce u ̸∈ L∞(Ω). Moreover, for every
q < ∞ we have ∫

Ω
|u(x)|q dx = C

∫ 1
e

0
|log (− log r)|q rd−1 dr.

By the change of variables − log r = s we get that this last integral is equal to∫ ∞

1
(log s)q e−ds ds < ∞.

Moreover, its distributional gradient is given by

∇u(x) = x

|x|2 log |x|
, (3)

and we get, by the same change of coordinates as before,∫
Ω

|∇u(x)|d dx =
∫

Ω

1
|x|d| log |x||d

dx = β(d)
∫ 1

e

0

1
r| log r|d

dr = β(d)
∫ ∞

1

1
sd

ds < ∞.

Thus u ∈ W 1,d(Ω) \ L∞(Ω).
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Remark. clearly (3) holds in the sense of distributions on the domain Ω \ {0}. In order
to prove that the singularity at zero does not cause any problem, we proceed as follows :
let χ ∈ C∞([0, +∞), [0, 1]) be decreasing with χ(s) = 1 for every s ∈ [0, 1] and χ(s) = 0
for every s ≥ 2. For every ε > 0 let χε(s) = χ(s/ε). Then for every φ ∈ C∞

c (Ω) we have∫
Ω

u∇φdx = lim
ε→0

∫
Ω
(1 − χε(|x|))u∇φdx

= − lim
ε→0

∫
Ω
(1 − χε(|x|))φ∇udx + lim

ε→0

∫
Ω

χ′
ε(|x|) x

|x|
uφdx.

(4)

The first limit in the right hand side is equal to
∫

Ω φ∇u dx by dominated convergence
theorem, since ∇u given in (3) belongs to L1(Ω). The second limit is equal to 0, since∣∣∣∣χ′

ε(|x|) x

|x|
uφ

∣∣∣∣ ≤ log
(

log
(

1
ε

))
1
ε

∥φ∥L∞1[ε,2ε](|x|)

and therefore its integral (for n ≥ 2) converges to 0 as ε → 0.

Exercise 3.4. Just take in dimension d = 1 the open interval Ω = (1, ∞) and u(x) = x− 1
q .

Since p > q, we have u ∈ W 1,p(Ω), but∫
Ω

|u(x)|q dx =
∫ ∞

1

1
x

dx = ∞.

Exercise 3.5. If p > n, then W 1,p(Rd) ⊂ L∞(Rd). Thus fg ∈ Lp(Rd) since

∥fg∥Lp(Rd) ≤ ∥f∥L∞(Rd) ∥g∥Lp(Rd) .

Moreover, since ∂i(fg) = ∂ifg+f∂ig, by an analogous reasoning, we get ∂i(fg) ∈ Lp(Rd),
which shows that fg ∈ W 1,p(Rd).
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