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3 Sobolev Spaces

Exercise 3.1. We will prove it by induction. The case k = 1 is trivial, indeed f(x1,22) =

fl(:vg)fg(:vl) and
1(R2) — d d = 1 1 .
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Let now k£ > 2 and assume the estimate is true for k. We have to prove that the estimate
still holds for k£ + 1. Let us treat the case k = 2 to see how the proof of the induction
hypothesis should go. We have

f(x) = fi(wa, x3) fo(w1, 23) f3 (21, 72).

Thanks to Fubini’s theorem and Cauchy-Schwarz inequality (used each twice), we deduce
that
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For every fixed 1,2 € R, by Holder inequality with p =k + 1,p' = % we get
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By applying the inductive hypothesis on the functions | fi\% we obtain
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which together with (1), gives
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Since by hypothesis f; € LM (R**!), all the functions @gso — || fillpr+1®e) belong
to L**1(R). Thus by applying again Holder inequality (with k& + 1 terms) we get that
HkJrl | fill e+ ey € L'(R) and so, by integrating (2) in dzg4, we conclude

k+2
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Exercise 3.2. — By applying Holder inequality with exponents - and ﬁ we

get
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from which we deduce the desired inequality.
— For every z,y € 2 we have
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and by taking the supremum all over z,y € €2 we get the thesis.

Exercise 3.3. Since u(z) — +o0o as |z| — 0, we deduce u ¢ L*(2). Moreover, for every

q < oo we have
/|u dx =C / llog (— log )| r¢=t dr.

By the change of variables —logr = s we get that this last integral is equal to

/ (logs)? e % ds < oo.
1

Moreover, its distributional gradient is given by

T
Vule) = LPlog el

and we get, by the same change of coordinates as before,

| o q
)|4d —/ d/ — dr= d/ —d .
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Thus u € Wh4(Q) \ L>=().
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Remark. clearly (3) holds in the sense of distributions on the domain Q2 \ {0}. In order
to prove that the singularity at zero does not cause any problem, we proceed as follows :
let x € C*(]0,+0),[0,1]) be decreasing with x(s) =1 for every s € [0,1] and x(s) =0
for every s > 2. For every € > 0 let x.(s) = x(s/¢). Then for every ¢ € C2°(Q2) we have

/quodx zlim/(l — xe(|z]))uVpdx
Q e=0 Jq
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(4)

The first limit in the right hand side is equal to fQ ©Vudzr by dominated convergence
theorem, since Vu given in (3) belongs to L'(€2). The second limit is equal to 0, since

1 1
< tog (105 (2 ) ) el L (i)

and therefore its integral (for n > 2) converges to 0 as € — 0.
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Exercise 3.4. Just take in dimension d = 1 the open interval 2 = (1, 00) and u(z) = ot
Since p > ¢, we have u € WH?(2), but

<1
/ lu(z)|? de = / —dx = 0.
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Exercise 3.5. If p > n, then W'?(R?) C L>*(R%). Thus fg € L?(R?) since

1f9llio@ay < 1 llos @ay 90w ey -

Moreover, since 9;(fg) = 0;fg+ f0;g, by an analogous reasoning, we get 9;(fg) € LP(R?),
which shows that fg € WP(RY).
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